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ABSTRACT Agricultural management practices affect bulk soil microbial communities
and the functions they carry out, but it remains unclear how these effects extend to the
rhizosphere in different agroecosystem contexts. Given close linkages between rhizo-
sphere processes and plant nutrition and productivity, understanding how management
practices impact this critical zone is of great importance to optimize plant-soil interac-
tions for agricultural sustainability. A comparison of six paired conventional-organic pro-
cessing tomato farms was conducted to investigate relationships between management,
soil physicochemical parameters, and rhizosphere microbial community composition and
functions. Organically managed fields were higher in soil total N and NO3-N, total and
labile C, plant Ca, S, and Cu, and other essential nutrients, while soil pH was higher in
conventionally managed fields. Differential abundance, indicator species, and random
forest analyses of rhizosphere communities revealed compositional differences between
organic and conventional systems and identified management-specific microbial taxa.
Phylogeny-based trait prediction showed that these differences translated into more
abundant pathogenesis-related gene functions in conventional systems. Structural equa-
tion modeling revealed a greater effect of soil biological communities than physico-
chemical parameters on plant outcomes. These results highlight the importance of
rhizosphere-specific studies, as plant selection likely interacts with management in regu-
lating microbial communities and functions that impact agricultural productivity.

IMPORTANCE Agriculture relies, in part, on close linkages between plants and the
microorganisms that live in association with plant roots. These rhizosphere bacteria
and fungi are distinct from microbial communities found in the rest of the soil and
are even more important to plant nutrient uptake and health. Evidence from field
studies shows that agricultural management practices such as fertilization and tillage
shape microbial communities in bulk soil, but little is known about how these prac-
tices affect the rhizosphere. We investigated how agricultural management affects
plant-soil-microbe interactions by comparing soil physical and chemical properties,
plant nutrients, and rhizosphere microbial communities from paired fields under or-
ganic and conventional management. Our results show that human management ef-
fects extend even to microorganisms living in close association with plant roots and
highlight the importance of these bacteria and fungi to crop nutrition and produc-
tivity.

KEYWORDS agricultural management, differential abundance, microbial
communities, microbial ecology, rhizosphere-inhabiting microbes, structural equation
modeling

Soil microbial communities mediate the provision of many ecosystem services by
soils and are increasingly recognized as fundamental regulators of plant and

environmental outcomes of agroecosystems. Agricultural practices such as nutrient
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inputs and tillage have been shown to shape bulk soil microbial communities and
functions across spatial and temporal scales (1–4). Comparisons of bulk soil under
different management strategies, i.e., organic (nutrients provided from sources other
than synthetic inputs) versus conventional management, have revealed effects on soil
properties that, in turn, drive variation in microbial communities at small and interme-
diate scales (5–8). Small-scale studies designed to minimize environmental heteroge-
neity, such as long-term experiments on a single site, show strong effects of management
on soil physicochemical parameters (9, 10), microbial biomass (9), and habitat-specific
bacterial and fungal taxa (11). At an intermediate spatial scale, such as paired fields
within a region, contextual variables such as climate, soil type, and cropping system
largely influence the soil physicochemical parameters and microbial processes that
differ between conventional and organic fields. Organically managed processing to-
mato fields in California have higher levels of organic carbon, microbial abundance and
diversity, and N mineralization potential than those of conventional fields, while soils
under conventional management have higher inorganic N pools and salinity (7).
However, these studies often have not extended to the rhizosphere, and the studies
that have done so have not found universal predictors of rhizosphere community
assembly across contexts and scales (4, 12–14).

While bulk soil communities affect recruitment and assembly of rhizosphere micro-
bial communities (15), soil under the influence of plant roots represents a unique
environment that must be studied separately (16). The rhizosphere is a hot spot of
interactions where dynamic relationships between plant roots and soil microbial com-
munities occur, allowing bacteria and fungi to break down and cycle organic matter
and release nutrients (17), promote plant growth via direct and indirect mechanisms
(18), and suppress pathogens (19). While linking agricultural management to large-scale
outcomes such as nutrient fluxes or ecosystem services requires an analysis of bulk soil
properties and processes, understanding the complex relationship between manage-
ment practices and plant nutrition and productivity necessitates shifting the focus to
the rhizosphere (20). Some evidence suggests that management can affect the
ecosystem-level functions carried out by bulk soil microbial communities through
impacts on microbial diversity (21), but the unique chemistry and microbial commu-
nities found in the rhizosphere (22) are more closely linked to plant outcomes of
agricultural importance (23). Because rhizosphere soil is shaped by complex interac-
tions between plant and bulk soil processes, the effects of agricultural management on
rhizosphere communities and the functional implications are not always easy to
predict.

The few studies that have addressed this question have concluded that differences
in bulk soil microbial and protist communities do carry over to some extent to
rhizosphere communities (22, 24). However, such studies have frequently been con-
ducted on long-term research stations (22, 24), leaving open the questions of scale and
context. Do management effects on rhizosphere microbial communities extend to an
intermediate scale, such as paired fields within a region? If so, what soil properties are
most closely linked to microbial variation, and how do differences in rhizosphere microbial
communities influence plant health and productivity?

A regional-scale study of paired organic and conventional processing tomato fields
in northern California was conducted to (i) characterize impacts of agricultural man-
agement on rhizosphere microbial community composition in California processing
tomato agroecosystems at an intermediate spatial scale, (ii) identify how taxonomic
shifts affected predicted metabolic and ecological functions carried out by these
communities, and (iii) explore the effects of management-induced microbial variation
on crop nutrition and productivity. To address the first objective of identifying variation
in rhizosphere microbial communities, we employed three complementary approaches,
namely, differential abundance, indicator species, and random forest analyses. Differ-
ential abundance analysis of microbial communities adapts transcriptome sequencing
(RNA-seq) methodology used for gene expression to identify taxa whose abundance
varies significantly among groups of samples (25). Indicator species analysis, an alter-
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native approach, detects taxa preferentially associated with a given habitat or sample
group based on a combination of specificity and fidelity rather than relative abundance
alone (26). Random forest analysis (27), a machine learning method, approaches the
microbe-sample group linkage from the opposite direction than the differential abun-
dance and indicator species approaches, identifying key taxa whose abundance can be
used to assign samples to the appropriate group.

The second objective, determining whether agricultural management induces shifts
in rhizosphere microbial functions, was addressed using phylogeny-based trait predic-
tion. This method predicts metagenomic data, such as genes involved in key agroeco-
logical functions, from 16S amplicon sequencing data (28). Structural equation mod-
eling (SEM), a statistical technique to test hypothesized relationships among variables
(29), was used to address our final objective of exploring linkages between soil properties,
microbial communities, and plant nutrition and productivity. We hypothesized that rhizo-
sphere community structure and function would differ between conventional and
organic systems and that divergent microbial communities would relate to the varia-
tion in plant traits within and between fields.

RESULTS
Site and management drive variation in soil and plant variables. Site had a

stronger influence on bulk soil and plant variables than management category (organic
versus conventional) (site R2 � 0.54, P � 0.001; management R2 � 0.17, P � 0.001) and
the site � management interaction was significant (R2 � 0.09, P � 0.001). Two principal
components (PCs) explained 41.99% (PC1) and 21.93% (PC2) of variation among
samples, respectively (Fig. 1). Samples tended to cluster primarily by site along PC1,
which was affected by numerous plant and soil nutrients, and secondarily by manage-
ment within each site. PC2 was primarily influenced by plant Cu, Mg, and Mn as well as
soil Mg and NO3-N (Fig. 1; Table 1).

Management system significantly affected soil physicochemical variables (P �

0.001). Soil parameters that were higher in organically managed fields included total N
(P � 0.001), C (P � 0.001), NO3-N (P � 0.008), Olsen-extractable P (P � 0.008), K (P �

0.0087), Na (P � 0.001), organic matter (OM) (P � 0.0022), and permanganate-

FIG 1 PCA of soil and plant variables measured in six processing tomato fields. Soil physicochemical parameters
and plant variables separated primarily by site along PC1, which explained 42% of variation. Samples separated
secondarily by management within site, and a significant site � management interaction was observed.

Management Effects on Tomato Rhizosphere Applied and Environmental Microbiology

August 2019 Volume 85 Issue 16 e01064-19 aem.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
06

 A
ug

us
t 2

02
1 

by
 1

28
.1

63
.2

39
.2

03
.

https://aem.asm.org


oxidizable carbon (PoxC) (P � 0.001), while pH was higher in conventionally managed
fields (P � 0.044). Soil physicochemical properties were highly correlated with one
another (Table 2). Magnesium was correlated with only NO3-N, cation exchange
capacity (CEC), and pH, but other macronutrients and key soil properties tended to vary
together. Management also affected plant nutrients (P � 0.001), many of which were
correlated with one another (Table 3). Concentrations of Ca (P � 0.0004), S (P � 0.001),
and Cu (P � 0.001) were all higher in plants from organically managed fields.

Rhizosphere microbial community composition responds to management
practices. The species composition of both bacterial and fungal rhizosphere commu-
nities varied according to site and management (Fig. 2), and these effects were also
observed when phylogenetic relatedness of bacterial communities was considered (see
Fig. S1 in the supplemental material). Tests of multivariate homogeneity of group
dispersions (betadisper function of the vegan package) showed that dispersions did not

TABLE 1 Factor loadings of scaled soil and plant variables contributing to PC1 and PC2

Variable PC1 PC2

Soil N (total) �0.243 �0.159
Soil C (%) �0.254 �0.159
Soil NO3-N (ppm) �0.063 �0.202
Soil P (Olsen) (ppm) �0.186 �0.024
Soil K (ppm) �0.260 �0.132
Soil Na (ppm) �0.190 �0.161
Soil Ca (ppm) �0.215 �0.166
Soil Mg (ppm) �0.108 0.361
CEC (meq/100 g) �0.227 0.219
SOMa �0.264 �0.050
pH �0.186 0.120
PoxC (mg C/kg soil) �0.221 �0.173
Shoot mass (g) �0.211 0.199
Root mass (g) 0.025 0.025
Shoot:root ratio �0.111 0.031
Plant C (%) �0.217 0.230
Plant N (%) �0.118 0.145
Plant C:N �0.097 0.034
Plant P (%) �0.190 0.250
Plant K (%) �0.253 0.055
Plant Ca (%) �0.251 �0.074
Plant Mg (%) �0.112 0.347
Plant S (%) �0.213 �0.117
Plant Mn (mg/kg) 0.165 0.284
Plant Cu (mg/kg) 0.012 �0.356
Plant B (mg/kg) �0.185 �0.114
Plant Zn (mg/kg) 0.248 �0.124
Plant Na (mg/kg) 0.006 0.234
aSoil organic matter.

TABLE 2 Correlations among soil physicochemical properties based on the Pearson correlation coefficienta

Variable

Correlation with:

N C NO3-N P K Na Ca Mg CEC OM pH PoxC

N 1.00 0.96*** 0.46*** 0.66*** 0.84*** 0.79*** 0.64*** �0.04 0.37** 0.82*** 0.25 0.84***
C 1.00 0.26 0.50*** 0.90*** 0.71*** 0.76*** �0.02 0.45*** 0.90*** 0.41** 0.89***
NO3-N 1.00 0.62*** 0.32* 0.56*** 0.22 �0.44*** �0.24 0.06 �0.29* 0.21
P 1.00 0.57*** 0.55*** 0.36** 0.13 0.35** 0.43** 0.12 0.35**
K 1.00 0.63*** 0.88*** 0.02 0.55*** 0.85*** 0.61*** 0.79***
Na 1.00 0.53*** �0.13 0.23 0.55*** 0.22 0.59***
Ca 1.00 �0.11 0.48*** 0.76*** 0.60*** 0.67***
Mg 1.00 0.81*** 0.25 0.51*** �0.06
CEC 1.00 0.68*** 0.79*** 0.36**
OM 1.00 0.55*** 0.76***
pH 1.00 0.34**
PoxC 1.00
a*, P � 0.05; **, P � 0.01; ***, P � 0.001.
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differ among sites or management types (both P � 0.05). Management influenced
rhizosphere microbial communities but to different extents depending on the site
identity (site codes MR, PF, and RR are used to indicate three distinct sites) (Fig. 2,
site � management interaction bacteria R2 � 0.12, P � 0.01; fungi R2 � 0.10, P � 0.01).
Management accounted for the greatest proportion of variation (53%) in bacterial
communities at the MR site (R2 � 0.53, P � 0.02), slightly more than at the PF site
(R2 � 0.43, P � 0.02) and nearly three times as much as at the RR site (R2 � 0.19, P �

0.01). Fungal communities were also affected by management, which accounted for
22% of variation at the MR site (R2 � 0.22, P � 0.02), 38% at the RR site (R2 � 0.38,
P � 0.01), and 43% at the PF site (R2 � 0.43, P � 0.02).

Bacterial diversity was affected by the site � management interaction (P � 0.001).
The Shannon index was higher in organically managed fields than conventionally
managed fields at all sites except the MR site (Table 4). Fungal diversity was affected by
site (P � 0.001) and management (P � 0.001) but not the interaction. Fungal diversity
was higher in organically managed fields at all sites and higher at the PF site than RR
or MR (Table 4).

Forty-eight bacterial amplicon sequence variants (ASVs) differed in abundance
between the rhizospheres of conventionally and organically managed plants at the � �

0.01 level (Fig. 3a). ASVs more abundant in organically managed rhizospheres included two
members of the genus Pseudomonas, while ASVs more abundant in conventionally
managed rhizospheres included six members of the genus Flavobacterium and three
members of the genera Devosia and Lysobacter. An ASV belonging to the genus
Pseudomonas had the highest relative abundance in organically managed fields, and an
ASV belonging to the genus Chryseobacterium had the highest relative abundance in
conventionally managed fields.

Nineteen fungal ASVs differed in abundance between management systems at the
P � 0.01 level, only one of which was more abundant in conventionally managed fields
(Fig. 3b). ASVs more abundant in organically managed plant rhizospheres included
three members of the genus Holtermanniella, three members of the genus Mucor, and
two members of the genus Pyrenochaetopsis. The ASV that was more abundant in
conventionally managed rhizospheres was identified as Plectosphaerella cucumerina.
Mucor hiemalis was most abundant in organic systems relative to conventional.

FIG 2 NMDS ordination of microbial communities sampled from the rhizosphere of processing tomatoes. Non-
metric multidimensional scaling based on Bray-Curtis dissimilarity matrices revealed bacterial (a) and fungal (b)
communities separated primarily by site and secondarily by management.

TABLE 4 Alpha diversity of bacterial and fungal communities by site and managementa

Value by site

MR RR PF

Community Conventional Organic Conventional Organic Conventional Organic

16S 3.50 � 0.14 2.90 � 0.09 2.72 � 0.05 2.99 � 0.08 3.28 � 0.08 3.58 � 0.07
ITS 2.60 � 0.08 2.62 � 0.18 2.68 � 0.08 3.12 � 0.06 2.89 � 0.16 3.32 � 0.07
aValues reported are Shannon index � standard error.
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Since system management has a strong impact on multiple soil properties, we
conducted redundancy analysis (RDA) with forward selection to identify which soil
physicochemical properties have the greatest influence on rhizosphere bacterial and
fungal community composition. After site and management, Ca was the most signifi-
cant driver of both bacterial and fungal community composition. Bacterial community
composition also responded to Mg levels, while fungi were significantly influenced by
Na and K.

FIG 3 Differentially abundant microbial taxa. (a) A total of 48 bacterial and (b) 19 fungal taxa differed in
abundance between conventional and organic management systems at the � � 0.01 level. Colored bars
represent the natural logarithm of abundance of each taxon, and gray bars represent the ratio of
abundance in the organic system to abundance in the conventional system. Multiple strains or species
within genus are shown. NA indicates that sequences could not be identified at the genus level.
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Indicator species of rhizosphere communities differ between systems. Indicator
species analysis showed 57 system-specific bacterial ASVs, namely, 35 with the con-
ventional system and 22 with the organic system (see Table S3 in the supplemental
material). Members of the genera Flavobacterium (8), Pedobacter (4), Lysobacter (3), and
Pseudomonas (3) had the greatest number of sequences in the conventional system and
Pseudomonas (4) in the organic system. Fewer fungal indicator taxa were discovered,
with only 4 fungal ASVs associated with the conventional system but 17 with the
organic system. The four ASVs associated with the conventional system came from
different genera, while Holtermanniella (6) and Mucor (4) were the most represented
indicator genera in the organic system. Fifteen of the 78 taxa identified by indicator
species analysis were also differentially abundant. Because the indicator value (IndVal)
index represents the probability of finding a given species in the environment of interest,
taxa with a high relative abundance in the environment will generally score high on the
fidelity component of the IndVal index. This was the case for Flavobacterium spp. in the
conventional system and Pseudomonas, Holtermanniella, and Mucor spp. in the organic
system.

Random forest (RF) analysis was used to identify ASVs that could be used to
discriminate between management systems. ASVs belonging to the genera Lysobacter
and Gibellulopsis had the greatest impact on the mean decrease in accuracy and mean
decrease in Gini coefficient of the random forest model (see Fig. S2 in the supplemental
material). Substantial overlap was observed between the results of RF analysis and
differential abundance analysis. Eleven of the 20 most significant ASVs from the RF
analysis had also been identified through differential abundance analysis, although
ASVs, such as Gibellulopsis spp., that had a significant impact on the RF model only
slightly differed in abundance between systems (Fig. 3).

Management induces changes in predicted rhizosphere bacterial functions. Of
the total number of genes predicted, 4.8% (169) differed in abundance between the
rhizosphere of organic and conventional plants. Of those genes, 79 were more abun-
dant in the organic system and 90 were enriched in the conventional system. Functions
corresponding to cellular processes including quorum sensing, biofilm formation, and
chemotaxis showed the greatest difference between systems, with only two peroxi-
some functions upregulated in the organic system and 31 upregulated in the conven-
tional system (Fig. 4). Genes with the highest relative abundance in the organic system
were distributed across a variety of functions, including ABC transporters (12), two-
component systems (8), biosynthesis of siderophores (5), starch and sucrose metabo-
lism (5), and type I polyketide structures (5). A component of the trcR/trcS two-
component regulatory system, trcR (K07672), was upregulated by the greatest ratio in
organic systems. Genes with greater relative abundance in the conventional system
tended to be associated with biosynthesis of amino acids (19), two-component systems
(18), quorum sensing (10), ABC transporters (9), and biofilm formation (9) (Fig. 4).

Structural equation modeling identifies key linkages among plant, soil, and
microbial variables. Hypothetical links between bulk soil physicochemical parameters,
plant nutrition, rhizosphere microbial communities, and plant biomass were tested
using structural equation modeling (SEM) across management systems (Fig. 5a). Bac-
terial and fungal communities were represented by two vectors each (PC1B, PC2B,
PC1F, and PC2F) that were derived from principal-component analysis shown in Fig. 2.
Plant biomass was most strongly positively correlated with plant P, which, in turn, was
most strongly correlated with fungi from the PC2F vector (Fig. 5b). The taxa that
contributed most to PC2F were Vishniacozyma victoriae and an unidentified Solicocco-
zyma sp. Neither of these species were identified in the differential abundance analysis
(Fig. 3b). Fungi from the PC1F vector had a slight positive influence on plant Na and
included ASVs classified as Alternaria sp., Cryptococcus aerius, and Plectosphaerella
cucumerina. PC1B, the first principal component of bacterial communities, was nega-
tively correlated with shoot C:N ratio; the three ASVs with the greatest contribution to
this component were a strain of Pseudomonas and two strains of Stenotrophomonas.
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FIG 4 Differentially abundant functions. Phylogeny-based trait prediction revealed 169 functional genes
that differed in abundance between the two systems at the � � 0.01 level, of which 79 were more
abundant in the organic system and 90 in the conventional system.
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FIG 4 (Continued)
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The second principal component of bacterial communities (PC2B) was slightly posi-
tively correlated with plant biomass, P, Na, and C:N ratio; four of the five ASVs with the
greatest contribution to this component were classified as Pseudomonas sp.

The final SEM had a �2 test statistic of 1.907 with 3 degrees of freedom, giving a �2/v
ratio of 0.64, root mean square error of approximation (RMSEA) of 0.000 (90% confi-
dence interval 0.000 � x � 0.195), comparative fit index (CFI) of 1.000, Tucker Lewis
index (TLI) of 1.062, and standardized root mean square residual (SRMR) of 0.016. A low
�2/v ratio indicates a good model, although this test statistic does not perform well
with small sample sizes (30). The CFI and TLI model indices perform well with small
sample sizes and are above the acceptable threshold (0.95 for a good model [31]). An
SRMR less than 0.08 generally indicates that a model fits the data well (32).

DISCUSSION

Our objectives were to explore how management practices implemented in organic
and conventional tomato production systems shape rhizosphere microbial composi-
tion, infer how taxonomic shifts affected microbe-mediated functions, and identify
linkages between management-induced shifts in soil physicochemical parameters,
rhizosphere microbial communities, and plant nutrition and productivity. In support of
our hypotheses, we identified specific taxa that differed in abundance between man-
agement systems and predicted the functional implications of those shifts in commu-
nity composition (Fig. 3, 4, and S2). Some differentially abundant taxa were confirmed
as indicator species that could be used to distinguish communities between manage-
ment systems. More importantly, phylogeny-based trait prediction showed that
management-induced differences in rhizosphere bacterial community composition
translated into agriculturally relevant outcomes, particularly with regard to plant
nutrition and pathogen-related functions such as quorum sensing and biofilm forma-
tion (33, 34) (Fig. 4 and 5). Although our techniques could not examine the contribution
of fungi to predicted function, it is likely that observed compositional shifts in fungal
communities increase divergence in functional outcomes between systems.

Bacterial diversity was higher in the rhizospheres of organically managed plants at
all sites except MR, and fungal diversity was higher in the organic system across sites,
consistent with other studies finding increased microbial diversity under organic
management (2, 7, 35–37). Numerous bacterial ASVs belonging to the genus Pseu-
domonas, which contains members known to possess plant-growth-promoting prop-
erties (18, 19), had a higher relative abundance in organic systems (Fig. 3a). Sixteen of

FIG 5 Structural equation model linking soil, plant, and microbial variables. (a) A hypothetical model linking soil, microbial, and plant parameters was tested
using structural equation modeling. (b) The final SEM showed that microbial communities had a strong but indirect effect on plant biomass through a positive
correlation between fungal community composition and plant P. Soil Ca and Na affected fungal communities more strongly than bacterial communities. Red
represents soil variables, blue represents microbial variables (principal components 1 and 2 extracted from PCA of bacterial and fungal communities,
respectively), and green represents plant variables. Dashed lines represent fixed parameters.
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the 17 differentially abundant fungal ASVs were found at higher abundance in the
rhizosphere of plants growing in the organic system; these included numerous mem-
bers of the genera Holtermanniella and Mucor (Fig. 3b). Holtermanniella is a small,
cold-tolerant genus of potentially parasitic fungi (38) that includes species able to
metabolize diverse carbon compounds and generate unique fatty acid profiles (39).
Mucor is a genus of starch-decomposing fungi (40) that are capable of metabolizing a
wide range of complex carbohydrates (41). Although a long-term comparison of
conventional and organic management found no difference in the relative abundance
of Mucor sp. in bulk soils (42), potential shifts in the rhizosphere have not been shown.
In addition, predicted potential community functions also differed between soils under
different management systems. Although our approach relies on predicted potential
(DNA-based) functions rather than genomic or transcriptomic information from the
strains found at these sites, Tax4Fun performs well in comparison with shotgun
metagenomic data from soils (28), suggesting that broad patterns may be informative.
Bacterial community shifts in the rhizospheres of organically managed plants were
associated with a higher abundance of predicted genes involved in starch and sucrose
metabolism and biosynthesis of siderophores, which can increase the availability of
micronutrients such as iron (Fig. 4). Other enzymes with high relative abundance in the
organic system catalyze reactions involved in the metabolism of tyrosine, carotenoids,
and other complex organic compounds (Fig. 4).

Rhizosphere diversity was generally lower under conventional management, and
community composition and functions were notably different. ASVs belonging to the
genera Flavobacterium, Devosia, and Lysobacterium had higher relative abundances in
the conventional system. The Flavobacterium genus has been found elsewhere to
increase in abundance in response to 6 years of intensive organic vegetable production
(43), suggesting that individual species within the genus may respond differently to
conventional and organic management. Members of Lysobacterium have been shown
to degrade complex aromatic compounds (44). Plectosphaerella cucumerina, a known
pathogen that causes rots on a variety of horticultural species (45), was the only fungal
ASV found to be more abundant in the conventional system. Perhaps due to the greater
abundance of this pathogen, functions upregulated in the conventional system in-
cluded genes related to quorum sensing and biofilm formation (Fig. 4).

Management practices and sites had a strong influence on soil chemical properties,
which, in turn, affected bacterial and fungal community composition. Forward selection
revealed that the two kingdoms responded to different sets of soil physicochemical
parameters, namely, bacterial community composition was affected by Ca and Mg,
while fungal community composition was affected by Ca, Na, and K. These predictors
are notably different from variables commonly accepted as important for microbial
community composition, such as organic matter (46, 47), pH (48, 49), and N. The failure
of organic matter and N to predict microbial community structure is surprising at first
glance, given that scarce C and N availability can limit rates of microbial growth and
functions such as mineralization and that the abundance of N-cycling microbial taxa
often varies with C and inorganic N species. However, this result is consistent with
multiple studies showing no effect of N on microbial community composition (50–52).
Agricultural management might outweigh the effects of variation in these parameters
since Ca and Mg were not affected by management. It may also be that low variation
in organic matter, pH, and soil N within the context of this study reduced the ability of
these parameters to explain variation in community composition (see Table S2 in the
supplemental material).

Soil Ca and Na have similarly appeared elsewhere as significant predictors of
microbial community composition. In another comparison of management systems,
soil Ca was higher in soils receiving organic amendments than in soils receiving
synthetic amendments and was among the parameters correlated with microbial
community composition (53). Ca was also a primary driver of microbial community
composition in a multiyear study of a soil amended with composted tannery sludge
(54). Salinity frequently drives variation in microbial community composition, especially
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in irrigated systems, although most commonly when a stronger salinity gradient is
present due to environmental filtering based on salinity tolerance (55–57).

SEM tied together this observed variation in microbial community composition with
soil and plant variables and tested a hypothetical model linking plant and soil biological
and physicochemical parameters with plant biomass (Fig. 5). Management was not
retained in the final model, suggesting that management effects were indirect and
captured by other included variables at these sites. Other studies have similarly found
that soil type and physicochemical parameters affect microbial community composi-
tion and catabolic functions more than long-term agricultural management practices
(58). Within this study, it appears that rhizosphere microbial communities were more
closely linked to differences in bulk soil properties created by management systems
than to the management practices themselves.

SEM revealed a greater relative influence of rhizosphere biological communities
than bulk soil physicochemical characteristics on plant nutrient content and biomass
(Fig. 5). A strong indirect linkage was observed between microbial communities and
plant biomass: fungal community composition was strongly positively correlated
with plant P, which, in turn, strongly correlated with shoot biomass (Fig. 5). The link
between plant P and fungal communities is particularly striking given the absence of
sequences belonging to the phylum Glomeromycota, which contains mycorrhizal fungi
(data not shown). The lack of mycorrhizal sequences may be partly explained by the
choice of amplicon or primer bias (59). Since the length of the amplified region differs
for mycorrhizae compared with the more abundant Ascomycota and Basidiomycota
(60), it is unlikely that mycorrhizae were truly absent from all samples. Nonetheless,
even nonmycorrhizal fungi can improve plant P status through solubilization, miner-
alization, and direct transfer of phosphate (61). Members of genera such as Aspergillus
and Penicillium release organic acids that can solubilize phosphate, potentially render-
ing it available for direct uptake by plants or mycorrhizae (62).

PC2B was slightly positively correlated with plant Na, and PC1B was negatively
correlated with C:N ratio. The correlation between bacterial community composition
and plant Na could be the direct effect of microbial interference in plant metabolism,
or changes in soil parameters could foster unique microbial communities and also
increase plant Na. While limitations of the measured data do not allow us to distinguish
between these explanations in this context, microbial influence on plant Na has been
reported elsewhere; certain bacterial strains are capable of plant tissue-specific regu-
lation of sodium transporters that increases salt tolerance in Arabidopsis spp. (63), while
other bacterial strains reduce salt accumulation in salinity-stressed plants (64). A
negative correlation with C:N ratio indicates that the bacterial populations improved
plant N content, a result that could be due to increased N availability via N fixation or
mineralization of organic matter.

This study identified rhizosphere microbial taxa and functions affected by agricul-
tural management and illuminated unexpected linkages between soil, microbes, and
crop nutrition and productivity, but compelling questions remain. Organic certification
encompasses a diverse set of management practices, and variation in cover crop
species, green manure inputs, or crop rotation complexity and duration likely leads to
diverse effects on soil microbes. To translate the broad, extensive conventional-organic
literature into tangible recommendations, future studies should focus on causal rela-
tionships between specific inputs or techniques and key soil physicochemical param-
eters. This could be achieved in part by employing SEM with a much larger data set (a
sample size of at least 200 [65] and data satisfying the requirement of multivariate
normality [66]) to allow the incorporation of additional variables (e.g., crop genotype,
N fertility source and rate, and tillage) and improve the predictive power of the model.
Such analysis would add nuance to the results of this study and enable the develop-
ment of management systems that foster agricultural productivity by maximizing
beneficial plant-soil-microbe interactions in the rhizosphere.

Our results add an additional layer of complexity to previous investigations of the
effects of agricultural management on microbial communities. Others have noted the
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importance of scale in determining how soil properties relate to microbial community
composition or function, as geographic scale alters the relative importance of factors
such as environmental heterogeneity and distance that influence microbial distribution
(67, 68). We emphasize the importance of integrating plants and rhizosphere processes
into these discussions of microbial biogeography, particularly at intermediate scales, as
plants exert strong influence on rhizosphere communities and may modulate manage-
ment effects on rhizosphere communities. Management of plant-microbe-soil interac-
tions in the rhizosphere is a critical step toward building more resource-efficient and
resilient agricultural systems, and our study indicates that soil management has strong
and consistent effects on landscape-level variation in the rhizosphere composition and
predicted function.

MATERIALS AND METHODS
Sample collection. Samples were collected from 6 paired fields under conventional and organic

management on Yolo silt loam during the 2017 growing season (details of sites and management
practices can be found in Table S1 in the supplemental material). Plant and soil samples were collected
�6 weeks after transplanting on the same date at paired fields. Samples were taken from six locations
per field (two on the exterior margins of the field and four internal). At each location, two entire plants
were excavated and shoot and root samples were separated by clipping at the base of the shoot. A bulk
soil sample was collected from the upper 10 cm of soil immediately adjacent to each plant. Roots were
separated from bulk soil, stored in paper bags, and transported to the lab on ice. Twelve root fragments
from each plot (6 from each individual plant) were pooled and rhizosphere soil was collected using a
shaking wash in an 0.9% NaCl/0.01% Tween 80 (vol/vol) solution followed by centrifugation. Because this
volume of soil was insufficient for full textural and nutrient analysis, we assumed that rhizosphere soil
characteristics such as texture and organic matter would be similar to the parameters measured for the
corresponding bulk soil. Shovels and other sampling implements were cleaned thoroughly between
samples. The remaining roots and shoots were dried at 60°C and weighed.

Plant and soil analysis. Dried bulk soil samples and aboveground dried biomass were homogenized
and analyzed for total nitrogen (N) and carbon (C) via combustion analysis (69). Soil nitrate was measured
using a flow injection analyzer (70), soil extractable phosphorus (P) was determined according to Olsen
and Sommers (71), and other soil nutrients were measured using inductively coupled plasma atomic
emission spectroscopy (ICP-AES) (72). Soil organic matter content was determined via the loss-on-
ignition method (73). Soil pH was measured on a saturated paste extract. Bulk soil properties can be
found in Table S2 in the supplemental material.

Dried aboveground biomass was ground thoroughly to pass a 2-mm sieve. Plant leaf samples were
analyzed for N, P, K, Ca, Mg, Mn, Fe, Cu, B, and Zn at the Agricultural Analytical Services Lab of
Pennsylvania State University. Total N was analyzed via combustion (74), and concentrations of the
remaining elements were determined via hot block acid digestion (75).

Microbial community analysis. DNA was extracted from rhizosphere samples using the MoBio
PowerSoil kit (Qiagen). At least 5 ng of DNA from each sample was sent for library preparation and
sequencing using a MiSeq instrument at Dalhousie IMR facility. The V4-V5 region of the 16S rRNA region
was sequenced to characterize bacterial communities and the internal transcribed spacer (ITS) region of
the rRNA gene was sequenced to characterize fungal communities (76, 77). Negative controls were also
extracted and submitted, but no reads were recovered. All statistical analyses were carried out using R
software (78). Reads were error-corrected and assembled into amplicon sequence variants (ASVs) using
DADA2 v.1.8 (79), with taxonomy assigned using SILVA v.128 for bacteria (80) and UNITE database (2017
release) for fungi (81). Taxa without a taxonomic assignment or assigned to Archaea, mitochondria, or
chloroplasts were removed from this data set. Those not assigned to the kingdom Fungi were removed
from the fungal data set. Sequence abundance was rarefied to 15,310 sequences per sample for bacteria
and 13,000 per sample for fungi, and all samples approached saturation.

Nonmetric multidimensional scaling (NMDS) was used to ordinate samples in two-dimensional space
(ordinate function of the phyloseq package using method � “NMDS”). Two outliers were removed from
this and subsequent analyses in order to minimize the stress function. A second NMDS ordination was
performed based on weighted UniFrac distances (distance function of phyloseq package with “wunifrac”
command) to determine whether the phylogenetic distance among samples was affected by site and
management. Shannon diversity was calculated for each sample using the estimate_richness function
(measures � “Shannon”) of the phyloseq package.

Differential abundance of microbial taxa. Differential abundance of bacterial and fungal taxa in
the rhizosphere of plants grown in organically and conventionally managed systems was carried out
using the DESeq2 package (25). Although applying this analysis to compositional data sets obtained from
sequencing microbial communities has been critiqued (82), the method has been shown to be effective
when library sizes are similar across groups and sample size is small (�50 samples per group) (83), as was
the case here. Sequences occurring in fewer than three samples were filtered out prior to the analysis to
avoid bias due to rare taxa (filter_taxa function of phyloseq package). Dispersions were fit to the mean
intensity using a gamma-family generalized linear model (GLM) by setting the parameter fitType �
“parametric,” and significance was assessed using the Wald test with a significance threshold of � � 0.01.
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Indicator species analysis. Indicator species analysis was conducted to identify specific rhizosphere
microbial taxa that were associated with the conventional or organic system using the indicspecies
package (84). Briefly, the indicator value (IndVal) index was calculated for each ASV-system combination
as the product of specificity and fidelity indices (84). The highest IndVal index for each ASV was tested
for significance with 999 permutations [multipatt function of indicspecies package using duleg � TRUE
and control � how(nperm � 999)]. A Bonferroni correction was used to control the family-wise error rate
at � � 0.01.

Random forest analysis. We complemented the indicator species analysis with a random forest
approach, which identifies bacterial and fungal ASVs that could be used to classify samples by manage-
ment system through a machine learning algorithm. Random forest analysis was conducted using the
randomForest package (27). The data set was split into subsets for training (70% of observations) and
validation (30% of observations). Model parameters were adjusted to minimize the error rate, but the
default parameters for ntree (ntree � 500) and mtry (mtry � 	p, with p representing the number of
model parameters) resulted in the lowest error rate (6.52%). The classification accuracy was calculated to
be 95%, indicating high prediction accuracy. ASVs with the greatest contribution to the classification
algorithm were identified according to the highest scores for mean decrease in accuracy or mean decrease
in the Gini coefficient (importance function of randomForest package).

Phylogeny-based functional trait prediction. We determined potential shifts in rhizosphere mi-
crobial functions with management and soil properties using functional trait prediction of 16S commu-
nities with the themetagenomics package (85). Briefly, this package implements Tax4Fun (28) to predict
functions from the KEGG Orthology database that are associated with provided abundance tables,
sample metadata, and phylogenetic information. Phylogeny is assigned according to the SILVA rRNA
database project (80). To identify functions that differed in abundance between systems, predicted
functions were subjected to differential abundance analysis using the DESeq2 package. Parameters were
identical to those described previously and the significance threshold was set at � � 0.01.

Principal-component analysis of plant and soil variables. Principal-component analysis (PCA) was
used to reduce the dimensions of the multivariate data set containing scaled soil and plant variables,
visualize samples in two-dimensional space, and calculate factor loadings (prcomp function of stats
package). Outliers for individual soil and plant variables were identified with Grubb’s test (grubbs.test
function of outliers package) and removed from the data set prior to PCA. The multivariate homogeneity
of group dispersions (betadisper function of vegan package) was tested to determine whether variances
differed among sampling sites. The effect of management on soil and plant variables was tested with
multivariate analysis of variance (MANOVA) using the manova function of the stats package (78).

Permutational multivariate analysis of variance. Permutational multivariate analysis of variance
was used to test the effect of the interaction between site and management on microbial community
composition (adonis function of vegan package), separately for bacteria and fungi. If the interaction was
significant, the magnitude of the management effect was then tested within each site. If the interaction
was not significant, permutational multivariate analysis of variance (PERMANOVA) was used to test the
relative magnitude of site and management effects. Redundancy analysis (RDA) was conducted to
identify soil physicochemical properties with the greatest influence on rhizosphere microbial community
composition. Parameters that significantly explained variation in bacterial or fungal community compo-
sition were identified using forward selection (ordistep function of vegan package).

Structural equation modeling. SEM was used to test a hypothetical model linking soil, plant, and
microbial variables that affect shoot biomass (Fig. 5a). Parameters included in the model were chosen
using forward selection of a linear model with shoot biomass as the response variable and all other soil,
microbial, and plant parameters as independent variables (step function of stats package) (78). The
model was established using the sem function of the lavaan package (86) and visualized with the
semPlot package (87). The model was then refined by sequentially removing variables with poor
explanatory power (R2 � 0.50). Management (organic versus conventional) was originally included as a
variable but was ultimately removed because management significantly and consistently decreased the
fit statistics for the model, perhaps because the variables retained in the model were good indicators of
management differences.

Although the variables identified by forward selection (soil Na, soil Ca, plant P, plant C:N, and plant
Na) were not consistent with a hypothesis of multivariate normality, the sample size was too small to
permit the exclusion of outliers. The first two principal components of microbial species composition,
which accounted for 31% and 15% of bacterial variation (PC1B and PC2B, respectively) and 26% and 21%
of fungal variation (PC1F and PC2F, respectively), were used to represent microbial communities in the
model (Fig. 5). The maximum likelihood (ML) method was used to estimate model fit test statistics.
The goodness of fit of the model was tested using standard model fit indices, namely, the ratio of the
chi-square statistic to degrees of freedom (�2/v), root mean square error of approximation (RMSEA),
comparative fit index (CFI), Tucker-Lewis index (TLI), and standardized root mean square residual (SRMR)
(88).

Data availability. Sequencing data are available in the NCBI SRA data repository under the project
accession number PRJNA539989.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.01064-19.
SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.
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